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Abstract
In a review of supercooled and glassy water Debenedetti (2003 J. Phys.: Con-
dens. Matter 15 R1669) proposes that the boiling line for supercooled water
(a binodal) can meet a conjectured low temperature limit of stability for su-
percooled water (a spinodal) only at a critical point. This comment offers a
counter-example to show that the meeting of a binodal and a spinodal need not
be a critical point.

Debenedetti [1] proposes that the boiling line for supercooled water (a binodal) can meet a
conjectured low temperature limit of stability for supercooled water [1–4] (a spinodal) only at
a critical point. If correct, this proposal rules out a spinodal limit of stability for supercooled
water at its equilibrium vapour pressure because it is most unlikely that the liquid and vapour
become identical when cooled below the triple point. A wider implication of the same proposal
is that a freezing line cannot meet a liquid spinodal when extrapolated to negative pressure [5]
because the anisotropic crystal cannot become identical to the isotropic liquid [6].

This comment offers a counter-example to show that the meeting of a binodal and a
spinodal need not be a critical point.

A binodal line is located where two phases, 1 and 2, are in equilibrium, with the same
Gibbs free energy

G1(T, P) = G2(T, P) (1)

at temperature T and pressure P . Derivatives of G, such as the volume V = (∂G/∂ P)T and
the isothermal compressibility κ = −(∂V/∂ P)T /V , generally differ between the two phases
at a binodal.

When a metastable phase approaches its spinodal line, TS(P), it becomes absolutely
unstable [4] and κ tends to infinity:

κ → ∞ as T → TS(P). (2)

Equations (1) and (2) are both satisfied at a critical point where two phases are identical,
the free energy and all its derivatives are the same in both phases, their spinodal lines meet
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Figure 1. The pressure–temperature diagram for the HSvdW model (equation (3)). CP is the
liquid–gas critical point. Tc and Pc are the critical temperature and pressure. The spinodal curves
are located where (∂ P/∂V )T = 0, and the freezing line is defined by equation (1). Along the ideal
glass line the liquid has the same entropy and density as a glass [8]. The curves are calculated as
described in [8], using the pressure and entropy of hard spheres from equations (4) and (5) of [9]
for the fluid, from equations (1) and (2) of [10] for the face centred cubic crystal and the ideal glass
transition density from [11].

and the compressibility diverges. But equations (1) and (2) do not require that two phases in
equilibrium become identical as one of the phases approaches its spinodal.

Longuet-Higgins and Widom [7] proposed modelling simple substances by hard spheres
with van der Waals attractions (HSvdW). The HSvdW equation of state is

P(ρ, T ) = PHS(ρ, T ) − aρ2, (3)

where PHS is the pressure of hard spheres, ρ is the density and a measures the strength of the
mean field attractions [8]. PHS is available from simulation studies [9–11] that also yield the
entropy and free energy. The HSvdW model gives a good account of the melting of argon
and its properties at the triple point [7]. Figure 1 shows that the model is also in accord
with Sastry’s [12] simulation results which suggest that the liquid spinodal meets the ideal
glass transition line with the same slope [8, 13] when T/Tc ≈ 0.11 and P/Pc ≈ −34 for a
Lennard-Jones mixture.

Where the freezing line meets the liquid spinodal in figures 1 and 2, the densities of the
HSvdW liquid and crystal are well within the stable density ranges of the hard sphere fluid
and crystal, respectively, so the hard sphere properties are not extrapolated to determine the
properties of the model at the intersection. The intersection is not a critical point because
(i) symmetry considerations [6] rule out a crystal–liquid critical point, (ii) the HSvdW crystal
is 45% denser than the liquid there and (iii) the crystal spinodal does not meet the liquid
spinodal there.

The model is thermodynamically consistent [7] so thermodynamics does not require the
intersection of a binodal and a spinodal to be a critical point.

The figures are specific to the HSvdW model but the conclusion is more general. If
spinodal and ideal glass lines set upper and lower temperature thermodynamic bounds on the
existence of a real stretched liquid [8], then any plausible extrapolation of the freezing line to
negative pressure must meet one of the lines. It is conceivable that the freezing line meets the
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Figure 2. The temperature–density diagram for the HSvdW model. The density is the fraction of
space occupied by the spheres. CP is the gas–liquid critical point. The solid curves are binodals
where two phases coexist in equilibrium. c, b, f and m mark the vapour condensation, liquid boiling,
liquid freezing and fcc crystal melting curves, respectively. Dashed spinodal curves for the vapour,
liquid and fcc crystal are labelled vs, ls and cs respectively and the line labelled ig locates the ideal
glass transition [11].

ideal glass line at a point where the crystal, liquid and glass have the same Gibbs free energy
and that the glass is more stable than the crystal at greater tensions. (The ideal glass is the
stable phase in the lower right corner of figure 2.) But the more likely scenario is that the
freezing line ends at the liquid spinodal [5] as shown in the figures.
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